Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

REV(++(x, y)) → REV(x)
REV(++(x, y)) → REV(y)
++1(x, ++(y, z)) → ++1(++(x, y), z)
REV(++(x, y)) → ++1(rev(y), rev(x))
++1(x, ++(y, z)) → ++1(x, y)
++1(.(x, y), z) → ++1(y, z)

The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

REV(++(x, y)) → REV(x)
REV(++(x, y)) → REV(y)
++1(x, ++(y, z)) → ++1(++(x, y), z)
REV(++(x, y)) → ++1(rev(y), rev(x))
++1(x, ++(y, z)) → ++1(x, y)
++1(.(x, y), z) → ++1(y, z)

The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

REV(++(x, y)) → REV(y)
REV(++(x, y)) → REV(x)
++1(x, ++(y, z)) → ++1(++(x, y), z)
REV(++(x, y)) → ++1(rev(y), rev(x))
++1(x, ++(y, z)) → ++1(x, y)
++1(.(x, y), z) → ++1(y, z)

The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

++1(x, ++(y, z)) → ++1(++(x, y), z)
++1(x, ++(y, z)) → ++1(x, y)
++1(.(x, y), z) → ++1(y, z)

The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


++1(x, ++(y, z)) → ++1(++(x, y), z)
++1(x, ++(y, z)) → ++1(x, y)
++1(.(x, y), z) → ++1(y, z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
++1(x1, x2)  =  ++1(x1, x2)
++(x1, x2)  =  ++(x1, x2)
.(x1, x2)  =  .(x1, x2)
nil  =  nil

Recursive path order with status [2].
Quasi-Precedence:
[++^12, ++2] > .2

Status:
++2: [2,1]
nil: multiset
.2: multiset
++^12: [2,1]


The following usable rules [14] were oriented:

++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
++(x, nil) → x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

REV(++(x, y)) → REV(y)
REV(++(x, y)) → REV(x)

The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


REV(++(x, y)) → REV(y)
REV(++(x, y)) → REV(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
REV(x1)  =  x1
++(x1, x2)  =  ++(x1, x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
++2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.